哈茨木霉菌与枯草芽孢杆菌(哈茨木霉)

导读 今天菲菲来为大家解答以上的问题。哈茨木霉菌与枯草芽孢杆菌,哈茨木霉相信很多小伙伴还不知道,现在让我们一起来看看吧!1、根癌农杆菌介导...

今天菲菲来为大家解答以上的问题。哈茨木霉菌与枯草芽孢杆菌,哈茨木霉相信很多小伙伴还不知道,现在让我们一起来看看吧!

1、根癌农杆菌介导的遗传转化法(Agrobacterium Tumefaciens-Mediated Transformation,ATMT)已被广泛地应用于丝状真菌的插入突变。

2、以具有植物病害生物防治功能的T.harzianum LTR-2的分生孢子为实验材料,研究建立了T.harzianum的高效ATMT插入技术(李国田等,2006)。

3、该技术无须制备原生质体,具有操作简单、转化效率高和突变体遗传稳定等特点,转化效率约为200~300个/107分生孢子。

4、通过继代培养和PCR检测,证明T-DNA中的潮霉素抗性基因插入木霉基因组中并可以随着有丝分裂稳定遗传。

5、South-ern 杂交分析表明,T-DNA在木霉染色体上的插入位点是随机的,并且大约有90%突变体的T-DNA 插入是单拷贝。

6、利用上述 ATMT 突变技术,建立了T.harzianum菌株LTR-2的插入突变体库。

7、共得到具有潮霉素抗性的突变体400余个,主要考察了以下性状的变异情况:①形态变化:大部分菌落形态变化不大,具有明显变化的约占总数的2%,分生孢子颜色也基本没有变化,仍然为绿色,T1-25 突变体产生的分生孢子为黄褐色,但后期仍然显出绿色,产孢量减少;②拮抗能力变化:突变体与立枯丝核菌(Rhizoctonia solani)进行平板对峙实验,抑菌能力降低的约占28%,增强的约占56%,无变化的约占16%;③重寄生能力变化:36.2%的突变体重寄生能力减弱,其中T4-59和T4-31几乎丧失重寄生能力,51%的突变体增强。

8、说明ATMT插入突变技术能够造成原始菌株的随机突变,是研究功能相关基因信息的有力工具,而该突变体库的构建,为研究木霉的植病生防功能基因提供了丰富的种质资源。

9、选择重寄生能力较强、减弱和基本丧失的突变体 T2-58,T2-60,T1-25,T4-31,T4-59,以野生型LTR-2 为对照,以病原菌谷禾丝核菌(Rhizoctonia cerealis)为靶标,盆栽条件下测定了这些突变体对小麦纹枯病的生物防治活性,发现重寄生能力显著减弱的突变体 T4-59和T4-31 对小麦纹枯病的防治效果明显降低,约降低7%~13%,而重寄生能力明显增强的菌株T2-58和T2-60则对病害的防治效果明显增强,约增强10%~12%,说明木霉的重寄生能力与其生防活性密切相关。

10、进一步的研究应利用这些突变体,探索与重寄生能力相关的基因信息。

11、5,6-二氢-6-戊基-2H-吡喃-2-酮(5,6-dihydro-6-penty-l2 H-pyran-2-one)是木霉菌产生的一种抗生素,具有椰子香味,生物活性高,对小麦纹枯病和棉花立枯病等多种植物病害都有显著的防治效果,因此具有很大的潜在应用价值。

12、通过土壤杆菌介导的T-DNA转化方法,利用土壤杆菌菌株携带的Ti质粒,对绿色木霉LTR-2进行插入突变,获得木霉LTR-2突变体共400株。

13、以串珠镰孢菌为指示菌,采用抑菌圈方法,从中筛选吡喃酮高产突变体6株,PCR和探针杂交证实,T-DNA序列已经插入木霉LTR-2基因组。

14、经GC-MS分析发现,其中一株突变体T-54在PDA培养基上产生的吡喃酮含量较高,在分生孢子中的含量达到了2.62mg/g,比野生菌株提高9倍(扈进冬等,2010)。

15、利用T-DNA整合的方式,产生木霉菌突变体并进一步筛选的方式十分普遍。

16、黄亚丽等(2010)通过对T.harzianum转化效率的因素具体研究,建立了转化效率高的体系,建立了含有8千多个转化子的突变体库。

17、黄亚丽等(2010)还研究了整合过程中的机制,他们根据T.harzianum的基因组特点,采用12条随机的AD引物,并分别与3条右边界嵌套特异引物的组合对T.harzianum突变子的T-DNA侧翼未知序列进行扩增,选出扩增效率最高的引物AD5,对T.harzianum的52个突变子进行Tail-PCR扩增,分析扩增序列后发现,获得的42条侧翼序列中,有7条只含有质粒序列,33条为单一的侧翼序列,其余2条的序列相同。

18、其中34条T-DNA侧翼边界序列中1/3的序列保存着完整的右边界,其余则出现了不同程度的缺失,研究说明,在农杆菌介导转化T.harzianum的过程中,会对T-DNA右边界产生一定的剪切作用。

19、紫外诱变和化学诱变的方法也常被用于T.harzianum 针对性性状筛选突变体系的构建。

20、杨合同等(2004b)通过紫外线诱变处理,获得了可以在低温下(10e)生长的绿色木霉LTR-2的快速生长型突变株LR,以及对多菌灵具有抗性的突变株LRR。

21、突变株对棉枯萎病菌、棉黄萎病菌、棉立枯病菌的平板拮抗能力一般低于野生型菌株。

22、与野生型菌株相比,突变株在PDA平板上对棉花立枯病菌、枯萎病菌和黄萎病菌的抑菌圈都有变化,但是多数情况下抑菌圈变小而不是变大。

23、LRR虽然对棉枯萎病菌和黄萎病菌的抑菌圈也较小,但是对两种病害的防治效果却略有提高。

24、LR比LTR-2更能适合非根际土壤环境,而LRR在健康棉花根际的定殖能力上,比LTR-2有明显下降。

25、LR对棉花立枯病基本没有防治效果,但对棉花黄萎病和枯萎病的防治效果则高于原始菌株;LRR对棉花上述3种病害的防治效果与原始菌株没有明显的差异。

26、在PDA、玉米琼脂和NA平板上菌株LR生长速度最快,而LRR则与野生型菌株LTR-2没有明显差别。

27、除了突变株LR在非根际土壤中的定殖能力有所提高以外,其他突变株的根际定殖能力没有明显改善,LRR定殖能力反而明显下降。

28、该研究一方面表明紫外线诱变后目标性状变化的随机性,另一方面也说明定殖能力与抗药性间没有必然关系。

29、紫外线诱变处理所获得的新性状容易消失,但也能够得到稳定的突变株。

30、对木霉来说,紫外线诱变仍然是值得利用的菌株改良技术,在扩大突变体筛选基数的基础上,能够获得所需要的突变株。

31、Hassan等(2005)将 T.harzianum 暴露于伽马射线中,诱导两株耐盐突变菌——Th50M6h和Th50M11。

32、在盐胁迫条件下,两株突变体的生长能力、孢子形成能力、拮抗病原菌能力均远超野生型。

33、安哲宇等(2010)通过紫外诱变和含药培养基诱导相结合的方法,获得了一株对三唑类杀菌剂有良好耐药性的T.harzianum的突变体,TUV-13。

34、其抗药性为野生菌株的10倍,不同世代中的抗性比较稳定,且与原始菌株存在差异。

35、该菌株可定殖于植物体内,植株生长产生正效应。

36、杨春林等(2010)同样采用紫外线诱变与药剂培养驯化相结合的方法,构建了以T.harzianum Th-30为原始菌株的突变体。

37、他们共得到4株可以比正常菌株耐受10倍福美双的变异菌株。

38、其中,变异菌株UV-4不仅能抵抗高浓度福美双的胁迫作用,还具有几丁质酶活性。

39、该菌株遗传性状稳定,具有福美双混用协同防治蔬菜真菌病害的功效。

40、Zhang等(2013)的研究切入点侧重在突变体木霉对作物的促生效果上。

41、研究通过紫外线诱变的方法从亲本SQR-T037菌株中得到124株突变体后代,并从中选择了拮抗植物病原菌能力较强的T-E5进行下一步的研究。

42、他们比较了T.harzianum突变体菌株T-E5与野生型菌株SQR-T037,同时以施用有机肥料作为对照。

43、研究中包括实验室和黄瓜温室试验,即对液体发酵液中植物激素的产出、对植物生长的促生能力和在植物根系根围的定制能力进行了分析评定。

44、结果显示,T-E5相对SQR-T037,在植物生长素IAA的效率指标中提高了30.2%;相应的,T-E5处理显著提高了黄瓜无论在土壤栽培还是水培条件下的生物量。

45、通过RT-PCR检测,在培养30d后,突变体T-E5在土壤样品中的定殖量几乎超过SQR-T037的10倍。

46、两菌株在植物根茎内的定殖速率几乎是一致的;但每个取样时间中T-E5的定殖率均高于野生型的SQR-T037。

47、木霉属内及与其他真菌之间的原生质体融合,可为T.harzianum获得更多的性状功能。

48、杨合同等(2005)以产孢量大,对苯菌灵有抗性,对潮霉素B敏感的T.harzianum菌株T9和产孢量少,对潮霉素B有抗性,对苯菌灵敏感的康宁木霉Tk7a为亲本,通过原生质体融合,筛选获得抗最高浓度杀菌剂的融合子。

49、融合子产孢量高于Tk7a,水解酶活性比双亲号,并且在根际的竞争能力比T9强。

50、张彩霞等(2004)对不同属间原生质体融合进行了成功尝试,他们构建了T.harzianum与链霉菌菌株原生质体融合技术。

51、具体过程为将T.harzianum T-23与链霉菌菌株A分别以庆大霉素和50-53 e热灭活120min作为遗传标记。

52、常规的聚乙二醇(PEG)作为融合系统的促融剂,通过调整PEG的最佳分子量及浓度和处理时间,最终确定0.05mol/L Ca2+的35%PEG6000为最佳融合系统,处理时间为15min。

53、经过融合系统处理产生的融合子再经选择再生培养基培养后,筛选形状稳定的融合子。

54、Srinicasan等(2009)希望通过原生质体融合的方法同时提高木霉中纤维素酶和几丁质酶的含量。

55、在他们的研究报告中,为了构建一株既含有上述双酶特性的独一无二的高效菌株,尝试整合高纤维素酶产出活性的一株里氏木霉和高几丁质酶产出活性的一株T.harzianum的原生质体。

56、他们利用细胞溶解酶分别从16株T.harzianum和里氏木霉中分离得到了原生质体。

57、原生质体融合系统采用的常规的PEG作为助融剂。

58、融合反应共获得20个生长效率高的融合子,紧接着通过抗性培养筛选,选出了六株具有良好的生长活性和拮抗活性的菌株。

59、这六株筛选菌株自身也显示了多层次的形态多样性,包括菌丝发育、菌落颜色、分生孢子形成模式和孢子染色等。

60、除了差异外,六个融合菌株仍具有与原始菌株相同的某些形态特征。

61、他们进一步通过PCR-PFLP验证了融合子具有原始菌株双亲的特征指纹条带。

62、从生长特性上看,三世代后,融合子后代的生长速率超过亲本的60%~70%。

63、更重要的是,融合子菌株比双亲菌株提高了40%~50%纤维素酶活性和10%~20%几丁质酶的活性,并且具有高于双亲7%~8%的生物拮抗活性。

64、Herrera等(2012)比较了T.harzianum突变菌株和野生型菌株对杀菌剂敏感性的不同。

65、他们将野生型T.harzianum(Th11,Th12和Th650)和突变体T.harzianum(Th11 A80.1,Th12 A10.1和Th650-NG7)同时暴露在不同的商用杀菌剂中进行研究。

66、研究结果显示,所有的野生和突变体菌株均能在含有浓度为1700mg/L戊菌隆的条件下出芽。

67、野生型菌株Th12和Th650及对应的突变体菌株Th12 A10.1和Th650-NG7均对不同浓度梯度的扑海因和代森锰有药敏反应。

68、这些研究成果为T.harzianum特定突变体菌株在实际作用时,可否与抗菌剂联合施用,可施用的范围、水平等做了有意义的评估工作。

本文就为大家分享到这里,希望小伙伴们会喜欢。

免责声明:本文由用户上传,如有侵权请联系删除!